Copied to
clipboard

G = C23.11D14order 224 = 25·7

1st non-split extension by C23 of D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.11D14, Dic7⋊C47C2, (C2×Dic7)⋊3C4, (C4×Dic7)⋊9C2, (C2×C4).26D14, C22⋊C4.3D7, C22.6(C4×D7), C72(C42⋊C2), C14.5(C22×C4), Dic7.8(C2×C4), C23.D7.1C2, C14.20(C4○D4), C2.1(D42D7), (C2×C14).18C23, (C2×C28).50C22, (C22×C14).7C22, (C22×Dic7).2C2, C22.12(C22×D7), (C2×Dic7).46C22, C2.7(C2×C4×D7), (C2×C14).4(C2×C4), (C7×C22⋊C4).3C2, SmallGroup(224,72)

Series: Derived Chief Lower central Upper central

C1C14 — C23.11D14
C1C7C14C2×C14C2×Dic7C22×Dic7 — C23.11D14
C7C14 — C23.11D14
C1C22C22⋊C4

Generators and relations for C23.11D14
 G = < a,b,c,d,e | a2=b2=c2=1, d14=b, e2=cb=bc, ab=ba, dad-1=eae-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=d13 >

Subgroups: 230 in 76 conjugacy classes, 41 normal (15 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, C23, C14, C14, C14, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, Dic7, Dic7, C28, C2×C14, C2×C14, C2×C14, C42⋊C2, C2×Dic7, C2×Dic7, C2×C28, C22×C14, C4×Dic7, Dic7⋊C4, C23.D7, C7×C22⋊C4, C22×Dic7, C23.11D14
Quotients: C1, C2, C4, C22, C2×C4, C23, D7, C22×C4, C4○D4, D14, C42⋊C2, C4×D7, C22×D7, C2×C4×D7, D42D7, C23.11D14

Smallest permutation representation of C23.11D14
On 112 points
Generators in S112
(2 37)(4 39)(6 41)(8 43)(10 45)(12 47)(14 49)(16 51)(18 53)(20 55)(22 29)(24 31)(26 33)(28 35)(58 98)(60 100)(62 102)(64 104)(66 106)(68 108)(70 110)(72 112)(74 86)(76 88)(78 90)(80 92)(82 94)(84 96)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 49)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 56)(22 29)(23 30)(24 31)(25 32)(26 33)(27 34)(28 35)(57 97)(58 98)(59 99)(60 100)(61 101)(62 102)(63 103)(64 104)(65 105)(66 106)(67 107)(68 108)(69 109)(70 110)(71 111)(72 112)(73 85)(74 86)(75 87)(76 88)(77 89)(78 90)(79 91)(80 92)(81 93)(82 94)(83 95)(84 96)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 110 50 84)(2 95 51 69)(3 108 52 82)(4 93 53 67)(5 106 54 80)(6 91 55 65)(7 104 56 78)(8 89 29 63)(9 102 30 76)(10 87 31 61)(11 100 32 74)(12 85 33 59)(13 98 34 72)(14 111 35 57)(15 96 36 70)(16 109 37 83)(17 94 38 68)(18 107 39 81)(19 92 40 66)(20 105 41 79)(21 90 42 64)(22 103 43 77)(23 88 44 62)(24 101 45 75)(25 86 46 60)(26 99 47 73)(27 112 48 58)(28 97 49 71)

G:=sub<Sym(112)| (2,37)(4,39)(6,41)(8,43)(10,45)(12,47)(14,49)(16,51)(18,53)(20,55)(22,29)(24,31)(26,33)(28,35)(58,98)(60,100)(62,102)(64,104)(66,106)(68,108)(70,110)(72,112)(74,86)(76,88)(78,90)(80,92)(82,94)(84,96), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)(28,35)(57,97)(58,98)(59,99)(60,100)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,110,50,84)(2,95,51,69)(3,108,52,82)(4,93,53,67)(5,106,54,80)(6,91,55,65)(7,104,56,78)(8,89,29,63)(9,102,30,76)(10,87,31,61)(11,100,32,74)(12,85,33,59)(13,98,34,72)(14,111,35,57)(15,96,36,70)(16,109,37,83)(17,94,38,68)(18,107,39,81)(19,92,40,66)(20,105,41,79)(21,90,42,64)(22,103,43,77)(23,88,44,62)(24,101,45,75)(25,86,46,60)(26,99,47,73)(27,112,48,58)(28,97,49,71)>;

G:=Group( (2,37)(4,39)(6,41)(8,43)(10,45)(12,47)(14,49)(16,51)(18,53)(20,55)(22,29)(24,31)(26,33)(28,35)(58,98)(60,100)(62,102)(64,104)(66,106)(68,108)(70,110)(72,112)(74,86)(76,88)(78,90)(80,92)(82,94)(84,96), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)(28,35)(57,97)(58,98)(59,99)(60,100)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,110,50,84)(2,95,51,69)(3,108,52,82)(4,93,53,67)(5,106,54,80)(6,91,55,65)(7,104,56,78)(8,89,29,63)(9,102,30,76)(10,87,31,61)(11,100,32,74)(12,85,33,59)(13,98,34,72)(14,111,35,57)(15,96,36,70)(16,109,37,83)(17,94,38,68)(18,107,39,81)(19,92,40,66)(20,105,41,79)(21,90,42,64)(22,103,43,77)(23,88,44,62)(24,101,45,75)(25,86,46,60)(26,99,47,73)(27,112,48,58)(28,97,49,71) );

G=PermutationGroup([[(2,37),(4,39),(6,41),(8,43),(10,45),(12,47),(14,49),(16,51),(18,53),(20,55),(22,29),(24,31),(26,33),(28,35),(58,98),(60,100),(62,102),(64,104),(66,106),(68,108),(70,110),(72,112),(74,86),(76,88),(78,90),(80,92),(82,94),(84,96)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,49),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,56),(22,29),(23,30),(24,31),(25,32),(26,33),(27,34),(28,35),(57,97),(58,98),(59,99),(60,100),(61,101),(62,102),(63,103),(64,104),(65,105),(66,106),(67,107),(68,108),(69,109),(70,110),(71,111),(72,112),(73,85),(74,86),(75,87),(76,88),(77,89),(78,90),(79,91),(80,92),(81,93),(82,94),(83,95),(84,96)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,110,50,84),(2,95,51,69),(3,108,52,82),(4,93,53,67),(5,106,54,80),(6,91,55,65),(7,104,56,78),(8,89,29,63),(9,102,30,76),(10,87,31,61),(11,100,32,74),(12,85,33,59),(13,98,34,72),(14,111,35,57),(15,96,36,70),(16,109,37,83),(17,94,38,68),(18,107,39,81),(19,92,40,66),(20,105,41,79),(21,90,42,64),(22,103,43,77),(23,88,44,62),(24,101,45,75),(25,86,46,60),(26,99,47,73),(27,112,48,58),(28,97,49,71)]])

C23.11D14 is a maximal subgroup of
C23⋊C45D7  C24.24D14  C24.31D14  C42.87D14  D7×C42⋊C2  C42.96D14  C4×D42D7  C42.105D14  C42.108D14  C4216D14  C24.56D14  C24.32D14  C24.34D14  C4⋊C4.178D14  C14.342+ 1+4  C14.442+ 1+4  C14.452+ 1+4  (Q8×Dic7)⋊C2  C14.752- 1+4  C14.532+ 1+4  C14.772- 1+4  C14.792- 1+4  C4⋊C4.197D14  C14.802- 1+4  C4⋊C428D14  C14.642+ 1+4  C14.842- 1+4  C42.137D14  C42.138D14  C42.139D14  C42.234D14  C42.159D14  C42.160D14  C42.189D14  C42.162D14
C23.11D14 is a maximal quotient of
Dic7.5C42  Dic7⋊C42  C7⋊(C428C4)  C7⋊(C425C4)  C4⋊Dic77C4  C4⋊Dic78C4  Dic7.5M4(2)  Dic7.M4(2)  C56⋊C4⋊C2  C22⋊C4×Dic7  C24.44D14  C23.42D28  C24.3D14  C24.4D14

50 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I···4N7A7B7C14A···14I14J···14O28A···28L
order122222444444444···477714···1414···1428···28
size1111222222777714···142222···24···44···4

50 irreducible representations

dim1111111222224
type+++++++++-
imageC1C2C2C2C2C2C4D7C4○D4D14D14C4×D7D42D7
kernelC23.11D14C4×Dic7Dic7⋊C4C23.D7C7×C22⋊C4C22×Dic7C2×Dic7C22⋊C4C14C2×C4C23C22C2
# reps12211183463126

Matrix representation of C23.11D14 in GL4(𝔽29) generated by

1000
0100
0010
00028
,
28000
02800
0010
0001
,
1000
0100
00280
00028
,
21000
22400
0001
0010
,
21200
11800
00017
00170
G:=sub<GL(4,GF(29))| [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,28],[28,0,0,0,0,28,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,28,0,0,0,0,28],[2,2,0,0,10,24,0,0,0,0,0,1,0,0,1,0],[21,11,0,0,2,8,0,0,0,0,0,17,0,0,17,0] >;

C23.11D14 in GAP, Magma, Sage, TeX

C_2^3._{11}D_{14}
% in TeX

G:=Group("C2^3.11D14");
// GroupNames label

G:=SmallGroup(224,72);
// by ID

G=gap.SmallGroup(224,72);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,96,188,50,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^14=b,e^2=c*b=b*c,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^13>;
// generators/relations

׿
×
𝔽